

PROJECTION METHOD

PROJECTION THEORY

The projection theory is used to graphically represent 3-D objects on 2-D media (paper, computer screen).

- The projection theory is based on two variables:
 - 1) Line of sight
 - 2) Plane of projection (image plane or picture plane)

Line of sight is an imaginary ray of light between an observer's eye and an object.

There are 2 types of LOS: parallel and converge

Parallel projection

Perspective projection

Plane of projection is an imaginary flat plane which the image is created.

The image is produced by connecting the points where the LOS pierce the projection plane.

Parallel projection

Plane of projection

Perspective projection

Plane of projection

Disadvantage of Perspective Projection

- 1) It is difficult to create.
- 2) It does not reveal exact shape and size.

MEANING

Orthographic projection is a parallel projection technique in which the parallel lines of sight are *perpendicular* to the projection plane

ORTHOGRAPHIC VIEW

Orthographic view depends on relative position of the object

Rotate

Tilt

to the line of sight.

Two dimensions of an object is shown.

More than one view is needed to represent the object.

Multiview drawing

Three dimensions of an object is shown.

Axonometric drawing

ORTHOGRAPHIC VIEW

NOTES

- Orthographic projection technique can produce either
 - 1. *Multiview drawing* that each view show an object in two dimensions.
 - 2. **Axonometric drawing** that show all three dimensions of an object in one view.
- Both drawing types are used in technical drawing for communication.

Axonometric (Isometric) Drawing

Advantage Easy to understand

Disadvantage Shape and angle distortion

Example Distortions of shape and size in isometric drawing

Types of Axonometrics

Multiview Drawing

Advantage It represents accurate shape and size.

Disadvantage Require practice in writing and reading.

Example Multiviews drawing (2-view drawing)

The Glass Box Approach

Orthographic Projection

Opening the Box

Final Views

The standard arrangement of three orthographic views:
Top View above the Front View
R Side View right of the Front View

Six Orthographic Views

Laying Out All Six Views

Three Primary Views

Construction of Views

First and Third Angle Projections

- First Angle International
- Third Angle U.S.